
Extra notes - JS - Core - Part 1

Dr Nick Hayward

A brief introduction to some of the core concepts for working with JavaScript.

Contents

Intro
Values and Types
Objects

objects
arrays

Checking Equality
JS Best Practices
References

Intro

A few of the primary, core concepts for working with JavaScript. Many of these concepts are applicable to client-
side design, web-stack mobile development, and web-stack desktop application development.

Values and Types

JS has typed values, and not typed variables. To help us, JS provides the following built-in types

boolean
null
number
object
string
symbol (new in ES6)
undefined

Another helping hand is provided by JS's typeof operator, which lets us easily examine a value and return its
type. We are asking JS for the type of value currently stored in the specified variable. For example,

var a = 49;
console.log(typeof a); //result is a number

So, as of ES6, there are 7 possible return types for JS. It's also useful to remember that in JS variables do not
have types, they are mere containers for the values. It's these values that specify the type.

As a point of interest, if we run the following

var a = null;
console.log(typeof a); //result is object

The result is an object, and not the expected null. This is a known, long standing bug, and one that may never
get squashed. Developers have often come to rely on this issue, and it can be seen used in different examples.

Objects

Objects, as you might imagine, are particularly useful in JS. In essence, the object type includes a compound
value, which JS can use to set properties, or named locations. Each of these properties holds its own value, and
can be defined as any type. Hence its general flexibility in JS development, and its widespread usage.

var objectA = {
 a: 49,
 b: 59,
 c: "Philae"
};

We can then access these values using either dot or bracket notation,

//dot notation
objectA.a;
//bracket notation
objectA["a"];

Dot notation tends to be more common, and is therefore often preferred for JS usage.

Image - JS Object

Arrays

In JS, an array is an object that contains values, again of any type, in numerically indexed positions.

So, we can store a number, a string, and the array will start at index position 0. It will then increment by 1 for
each new value.

These arrays can also have properties, for example the automatically updated length property.

var arrayA = [
 49,
 59,
 "Philae"
];
arrayA.length; //returns 3

Each value can be retrieved from its applicable index position,

 arrayA[2]; //returns the string "Philae"

Due to the nature of arrays, as special objects, we could use them as a catch-all solution for storing our values.
We could even add our own named properties, thereby mimicking the functionality of an object. However, this is
often considered poor usage, or misuse in many respects, of the functionality of objects and arrays in JavaScript.

Therefore, we can use objects for named properties, and arrays for values with numerically indexed positions.

Image - JS Array

Checking Equality

In JS, there are four equality operators, which include two not equal examples. These include

==, ===, !=, !==

The first option, ==, checks for value equality, whilst allowing coercion. The second option, ===, will also check
for value equality but without coercion. Therefore, this second option is also known as strict equality. For
example,

var a = 49;
var b = "49";

console.log(a == b); //returns true
console.log(a === b); //returns false

Therefore, as the rules imply, for the first comparison JS will check the values, and if necessary will try to coerce
one or both values to a different type until a match occurs. This allows JS to then perform a simple equality
check, which results in true.

The second check, however, is far simpler. As coercion is not permitted, a simple equality check is performed,
which results in the obvious false return.
So, an obvious question is which comparison operator should we use. The following are often suggested as
useful rules of thumb,

use === if it's possible either side of the comparison could be true or false
use === if either value could be one of the following specific values,

0, "", []
otherwise, it's safe to use ==. It will also simplify code in a JS application due to the implicit coercion.

We can also use their not equal counterparts, ! and !==. They work is a similar manner to the above.

Checking Inequality

Known as relational comparison, we can use the operators,

<, >, <=, >=

to check for inequality. Such inequality operators tend to be used to simply check comparable values like
numbers, normally those that have an ordinal quality. For example,

49 < 59

However, we can also use these inequality operators to check strings. This comparison is based on typical
alphabetical rules,

"hello" < "world"

Coercion also occurs with inequality operators, and it should be noted that we do not have to deal with the
concept of strict inequality. For example,

var a = 49;
var b = "59";
var c = "69";

a < b; //returns true
b < c; //returns true

Again, if we consider the above results we can see how JS follows a set of prescribed rules and patterns, which
informs its decision and outcome. So, in these examples for a < operator JS will check whether both values are
strings. If true, then it will perform a comparison based upon alphabetical checks. If either value is not a string, it
will coerce both sides to numbers and perform the comparison.

we can encounter an issue when either value cannot be coerced into a number

var a = 49;
var b = "nice";

a < b; //returns false
a > b; //returns false
a == b; //returns false

issue for < and > is string is being coerced into invalid number value, NaN
== coerces string to NaN and we get comparison between 49 == NaN

JS Best Practices

As an end to our initial foray into JavaScript, there are a few guidelines for best practices that are worth
considering.

variables

There are a couple of useful guidelines for using both global and local variables.

Where at all possible, limit use of global variables in JavaScript. In JS, they are easy to override, can lead to
unexpected errors and issues, and should be replaced with appropriate local variables or closures.

Local variables should always be declared with the keyword var to avoid the automatic global variable issue.

It's also useful to initialise variables as they are declared. This helps create cleaner code, single declaration and
initialisation, and avoids unnecessary undefined values.

declarations

As an act of good practice, and to avoid unnecessary or unwanted hoisting, add all required declarations at the
top of the appropriate script or file. Whilst providing cleaner, more legible code, it also helps to avoid unnecessary
global variables and the unwanted re-declarations.

types and objects

Avoid declaring numbers, strings, or booleans as objects. These should be treated more correctly as primitive
values, which helps increase the performance of our code, and decrease the possibility for issues and bugs.

type conversions and coercion

Due to the weakly typed nature of JS, it's important to avoid accidentally converting one type to another. For
example, converting a number to a string or mixing types to create a NaN (Not a Number). Also, we can often get
a returned value set to NaN instead of generating an error. For example, if we try to subtract one string from
another. However, if we try the following

"15" - 10

JS will convert the first string to a number, and then perform the subtraction.

comparison

With comparisons, it is better to try and work with === (equal value and equal type) instead of == (equal to).
As we've seen, the main issue that == tries to coerce a matching type before comparison. The second
comparison, === forces comparison of values and type.

defaults

Where parameters are required by a function, a function call with a missing argument can lead to it being set as
undefined. Therefore, it is good coding practice to at least assign default values to arguments to help prevent
issues and bugs.

switches

As already mentioned, fall-through in switch statement can be useful but you still need to consider a default for
the conditional statement. Therefore, ensure you always set a default to end a switch statement.

JS performance

Finally, a few simple steps to help improve general code performance in JavaScript.

loops

Loops are a common feature of JavaScript programming, and it makes sense to limit the number of calculations,
executions, and statements performed per iteration of a loop. Therefore, it's useful to check loop statements for
assignments and statements that only need to be checked or executed once, rather than each time a loop
iterates. The following for loop is a standard example of this type of quick optimisation

// bad
for (i = 0; i < arr.length; i++) {
...
}
// good
l = arr.length;
for (i = 0; i < l; i++) {
...
}

source - W3

DOM access

Working with the DOM repetitively can be slow, and resource intensive. Therefore, either try to limit the number of
times your code needs to access the DOM, or simply access once and then use as a local variable.

var testDiv = document.getElementById('test');
testDiv.innerHTML = "test...";

http://www.w3schools.com/js/js_performance.asp

JavaScript loading

As alluded to earlier, we do not always need to place our JS files in the <head> element. By adding our JS files
to the end of the page's body, we allow the browser to load the page first, and importantly the DOM itself.

Traditionally, whilst a browser was downloading a script, it would not start any other downloads. This might also
affect parsing and rendering of the page itself, thereby creating a delay in the overall page for the user.

However, whilst this modification in practice has now started to filter into most web app development, it is still not
practical for all JS development. For example, if we start building desktop apps, and mobile cross-platform apps
we cannot always implement this practice in our HTML.

References

MDN
MDN - JS
MDN - JS Const
MDN - JS Data Types and Data Structures
MDN - JS Grammar and Types
MDN - JS Objects

W3 - JS Object
W3 - JS Performance

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/const
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Data_structures
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Grammar_and_types
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Working_with_Objects
http://www.w3schools.com/js/js_objects.asp
http://www.w3schools.com/js/js_performance.asp

