
Extra	notes	-	HTML	-	Basics
Dr	Nick	Hayward

A	brief	introduction	to	some	of	the	basics	of	HTML.

Contents

Intro
<head> 	element

add	some	metadata
define	a	base	address
example	usage

<body> 	element
linking	or	hyperlinking
linking	-	example	usage
linking	-	extras
 	-	adding	images
working	with	tables
tables	-	example	usage
working	with	lists
lists	-	example	usage
working	with	forms
forms	-	example	usage

Intro

As	we	design	and	build	out	our	HTML	pages,	there	are	some	basics	that	we	may	follow	for	each	page,	site,	and
application.

<head> 	element

The	 <head> 	element	is	an	important,	and	useful,	part	of	a	HTML	document's	metadata.	The	 <head> 	element	allows
us	to	set	metadata	for	a	HTML	page,	which	can	either	be	customised	just	for	that	page	or	replicated	as	a	site-wide
implementation.

add	some	metadata

Within	the	 <head> 	section	of	our	web	page,	we	can	add	numerous	additional	elements.	For	example,	in	addition	to
CSS	information,	we	may	add	similar	links	and	code	for	JavaScript.

To	link	to	an	external	JavaScript	file	we	use	the	 <script> 	element	with	required	attributes	such	as	 type 	and	 src .
The	specific	required	attributes	vary	from	HTML4	to	HTML5.	For	example,

<!--	HTML4	and	XHTML	-->
<script	type="text/javascript"	src="script.js"></script>
<!--	HTML5	-->
<script	src="script.js"></script>

So,	in	our	example,	we	are	now	including	a	JavaScript	file	for	use	within	our	HTML	page.	This	means	that	we	can	use
JavaScript	functions,	which	will	be	available	for	use	with	defined	IDs	and	classes	in	the	page.	i.e.	our	defined	selectors
within	the	DOM.	We	may	also	choose	to	add	such	JavaScript	references	to	the	foot	of	a	given	page	instead	of	the
more	traditional	 <head> 	element.

We	can	also	set	a	title	for	our	page,	which	will	be	shown	as	the	page	title	in	a	browser	tab	or	window	heading.	This	is
simply	a	 <title> 	element	with	text	added	as	the	element	content.

define	a	base	address

We	may	also	set	a	default	base	address	for	all	relative	URLs	in	links	within	our	HTML.	This	means	we	could	specify
the	base	directory	once	in	the	 <head> 	section,	and	then	add	the	filename	or	image	location	relative	to	the	base
address,	instead	of	having	to	write	out	the	base	each	time	as	well.	You	can	override	this	base	address	at	any	time	in	a
link,	simply	by	expressing	the	full,	or	absolute,	URL.	Also,	you	can	only	add	one	base	address	per	page,	and	it	must
be	listed	in	the	 <head> 	element.	For	example,

<base	href="/media/images/"	target="_blank">

The	 <base> 	tag	provides	a	base	URL	for	all	links	in	a	document,	which	can	be	useful	for	a	large	number	of	links	with
the	same	base	location,	such	as	an	image	gallery.	It's	considered	good	practice	to	add	this	element	at	the	top	of	the	
<head> 	element,	so	we	may	then	reference	it	later	in	the	 <head> 	element,	if	necessary.	However,	you	have	to
ensure	that	other	links	use	the	full	URL,	or	they	will	similarly	inherit	this	base	URL.	Within	the	 <body 	of	our	HTML
document,	we	can	use	it	as	follows,

Flickr

Additional	metadata	for	the	web	page	can	also	be	added	to	the	 <head> 	section.

We	can	add	author	information,	a	description,	keywords	to	help	indexing,	revision	information,	language	information
and	so	on.

example	usage

<head>
		<meta	charset="utf-8">

		<title>Sample...</title>
		<meta	name="description"	content="sample	metadata">
		<meta	name="author"	content="COMP424">

		<link	href="style.css"	rel="stylesheet">
		<script	src="script.js"></script>

</head>

<body> 	element

The	body	element	allows	us	to	now	start	designing	and	adding	some	structure	for	rendering	and	presenting	our	web
page.	We	could	start	outlining	our	new	HTML	document	by	adding	some	headings.

In	HTML,	these	are	defined	by	default	as	 <h1> 	to	 <h6> ,	with	1	the	largest	all	the	way	to	the	smallest	6.

Headings	are	meant	to	be	used	as	headings,	and	not	simply	for	bold	&c.	By	default,	a	browser	automatically	adds	a
margin	before	and	after	each	heading.	This	can	then	be	customised	with	the	app's	CSS.

We	can	then	add	a	 <p> 	element	to	the	 <body> 	to	allow	us	to	add	some	simple	text	within	a	paragraph.

If	we	then	wanted	to	add	a	line	break,	we	could	add	the	
 	element.	Note	that	if	we	were	writing	strict	XHTML,	the
tag	should	be	
 	to	define	it	as	a	void	element.

We	could	also	divide	sections	of	our	paragraph	using	a	simple	 <hr> 	element,	which	adds	a	horizontal	line	or	rule	to
the	rendered	page.	However,	it's	becoming	less	common	to	see	such	a	division.	It	often	implies	a	rendering	division
instead	of	a	defined	structural	divide	and	break.

HTML	is	also	similar	to	many	programming	languages	in	allowing	us	to	clearly	and	easily	comment	throughout	our
document.	We	can	simply	add	a	comment	as	follows,

<!--	comment...	-->

linking	or	hyperlinking

Linking,	or	hyperlinking,	is	a	nearly	ubiquitous	action	within	web	pages	and	web	design.

Even	within	a	single	page	app	there	will	normally	be	some	semblance	of	links	and	internal	anchors.

So,	linking	within	HTML	can	be	considered	in	a	number	of	different	contexts.	For	example,

1.	 linking	to	an	external	site
2.	 linking	to	another	page	within	the	same	site
3.	 linking	different	parts	of	the	same	page

Within	web	design	and	HTML,	it	is	standard	to	add	links	to	text	and	images	embedded	within	a	page.

To	add	any	link	we	use	the	anchor	element	tag,	which	may	be	used	to	achieve	any	of	the	different	contexts	already
outlined.

So,	to	link	to	an	external	page	we	need	to	use	the	anchor	element	plus	some	additional	attributes.

The	default	attribute	is	named	 href .	This	is	added	to	the	anchor	element,	and	its	value	should	be	set	to	the	link
required,	as	demonstrated	in	our	examples.

We	can	use	this	construction	for	internal	links	within	our	website,	and	external	links	to	other	pages	and	websites.

However,	it	is	better	to	set	the	value	of	the	 href 	attribute	as	relative	to	the	root	directory	of	the	installed	website	or
domain	name	for	internal	links.

Link	addresses	may	also	be	specified	relative	to	directory	depth,	which	follows	the	standard	Unix	practice	for
traversing	directories.

We	can	also	add	anchors	and	links	for	traversing	within	the	same	HTML	document.	To	achieve	this	practice,	we	need
to	specify	our	anchor	using	a	 <name> 	attribute,	or	preferably	 <id> 	in	XHTML,	and	then	link	to	that	anchor	using	the
standard	anchor	element	with	 href 	attribute.

We	can	also	reference	anchors	from	other	pages	by	affixing	the	name	reference	to	the	url	for	the	page	itself	as	a	value
within	a	standard	'href'	attribute.

linking	-	example	usage

Links	in	HTML	may	be	specified	as	follows,

<!--	external	link	-->
Google
<!--	email	link	-->
Email
<!--	internal	page	link	-->
another	page
<!--	define	internal	anchor	-	using	name	attribute	-->
Internal	anchor
<!--	define	internal	anchor	-	using	ID	attribute	-->
Anchor
<!--	internal	anchor	link	-->
Visit	internal	anchor
<!--	internal	anchor	link	on	another	page	-->
Visit	internal	anchor
<!--	internal	anchor	link	on	a	page	on	an	external	site	-->
Visit	internal	anchor	on	external	
site

linking	-	extras

We	can	also	add	further	attributes	to	the	anchor	element	including,

standard	HTML	global	attributes	such	as	 class,	id,	lang,	style,	title...

and

anchor	element	optional	attributes	such	as	 target,	href,	name...

We've	already	discussed	the	 href 	and	 name 	attributes,	but	 target 	is	another	useful	attribute	for	links.

The	 target 	attribute	specifies	where	a	link	should	be	opened	relative	to	the	current	viewed	browser	window.

For	example,

_blank 	=	open	the	link	in	a	new	window	or	tab	(dependent	upon	new	window	settings	in	the	browser
preferences)
_self 	=	same	frame	as	it	was	clicked	(default	option)	(actual	frames	used	for	structuring)
_parent 	=	opens	within	the	parent	frameset	of	the	current	link	regardless	of	frame	location
_top 	=	opens	the	link	in	the	same	window	as	the	current	page

If	you	do	not	intend	to	use	frames	then	you	should	only	really	concern	yourselves	with	 _blank 	and	 _top .

The	others	will	still	work	regardless	of	frames,	but	you	should	be	aware	of	the	original	intent.

 	-	adding	images

By	using	the	HTML	element	 	we	are	able	to	add	a	link	to	an	image,	a	placeholder	of	sorts,	both	relative	and
absolute,	within	our	HTML	page.

The	 	element	also	requires	attributes	to	function	as	commonly	expected.

The	 src 	attribute	works	like	the	 href 	attribute	in	the	anchor	link	element.	It	allows	us	to	include	the	filename	of	the
required	image,	and,	where	applicable,	the	location	of	that	file.

Our	example	would	look	for	an	image	file	called	 image.jpg 	at	the	same	directory	level	as	the	current	HTML	page.	If
the	image	was	located	elsewhere,	our	 src 	value	would	need	to	reflect	this	as	well	unless	we	had	set	a	base	URL	for
the	page.

We	can	also	use	some	optional	attributes	with	our	 	element.

These	include,

class 	(specifies	css	class	for	styling)
id 	(unique	reference	id)
alt 	(renders	alternative	text,	defined	by	the	developer,	if	the	image	is	unable	to	be	loaded)
title 	(will	show	a	tooltip	message	for	the	image,	again	specified	by	the	developer)
width 	&	 height 	allow	a	developer	to	specify	a	size	for	the	space	to	hold	an	image.	The	image	is	resized	to	fit
the	given	dimensions.	If	the	image	is	not	found,	the	alt	text	will	be	shown	in	the	specified	sized	space.	The
dimensions	of	the	sized	space	will	be	maintained	within	the	html.

We	can	also	nest	images	within	anchor	links,	thereby	turning	the	image	itself	into	a	link.

Images	can	also	be	used	to	create	image	maps,	which	allow	us	to	designate	coordinates	within	a	given	image	where
we	may	attach	links	and	other	actions.	Basically,	we	are	making	designated	areas	of	an	image	clickable	or	interactive
with	internal	or	external	links.

working	with	tables

In	HTML,	tables	allow	us	to	group	data	in	a	similar	fashion	to	a	spreadsheet	or	database	table.

To	add	a	table	you	need	to	start	with	the	 <table> 	element.	There	are	then	three	main	elements	that	act	as	children
to	the	parent	 <table> 	element,	allowing	us	to	add	column	headers,	table	rows,	and	individual	row	cells.

To	add	a	row	we	use	the	 <tr> 	element.	Then	we	can	add	a	column	header	using	the	 <th> 	element.

Finally,	we	can	add	our	table	cells,	nested	within	table	rows,	using	the	table	data	 <td> 	element.

We	can	also	add	the	usual	styling	considerations	with	CSS.	So,	we	could	set	a	border	for	our	table,	a	different	colour
for	odd	rows,	header	colour	and	padding	and	so	on.	We	can	also	add	a	caption	to	our	table,	which	is	normally	set	as
the	first	child	element	of	our	table.	We	could	add	further	headers	as	needed,	as	well.

Columns	and	rows	can	span	multiple	cells	using	either	the	 colspan 	or	 rowspan 	attribute	respectively.

e.g.	`colspan="4"``

And,	we	can	also	nest	other	elements	within	a	table,	such	as	a	link	or	image.

tables	-	example	usage

<table>
		<caption>424	-	basic	test	table</caption>
		<tr>
				<th>heading	1</th>
				<th>heading	2</th>
		</tr>
		<tr>
				<td>row	1,	cell	1</td>
				<td>row	2,	cell	2</td>
		</tr>
</table>

working	with	lists

We	can	also	organise	data	using	lists.	In	HTML,	there	are	various	types	of	lists	available	to	us.	These	include,

unordered	list	-	
ordered	list	-	
definition	list	-	 <dl>

An	unordered	list	is	basically	the	same	as	using	a	list	of	bullet	points,	with	list	items	represented	using	the	
element.	The	character	used	to	display	the	bullet	point	can	be	customised	using	css,	such	as	a	circle,	disc,	square...
The	default	symbol	is	normally	a	black	circle.

If	we	start	nesting	our	unordered	lists,	then	the	default	list	type	will	now	be	displayed	as	a	disc.	If	we	nest	another
unordered	list	as	well,	the	list	type	will	show	a	square	by	default.	The	list	type	will	then	continue	as	a	square	for	further
nested	lists.

An	ordered	list	works	in	the	same	fashion,	but	instead	of	using	bullet	points	it	marks	each	list	item	with	a	number,
which	increments	by	1	per	descending	list	item.

You	can	also	customise	the	list	type	for	each	list	item.	For	example,	we	could	change	the	number	to	a	roman	numeral,
or	letters,	uppercase	and	lowercase....

This	can	be	styled	in	CSS	using	the	 list-style 	declaration.	However,	the	default	will	be	a	numerical	list.

A	definition	list	allows	us	to	organise	a	series	of	items	with	associated	definitions.	We	may	add	as	many	definitions	as
required,	and	also	nest	other	html	elements	within	our	definition.

lists	-	example	usage

unordered	list	 ,	ordered	list	 ,	definition	list	 <dl>
 	and	 	contains	list	items	

		...

		

definition	list	uses	 <dt> 	for	the	item,	and	 <dd> 	for	the	definition

<dl>
		<dt>Game	1</dt>
		<dd>our	definition</dd>
</dl>

working	with	forms

Adding	forms	to	your	HTML	will	often	become	a	common	requirement	within	your	website.

Forms	are	used	as	a	way	to	capture	data	input	by	a	user,	which	can	then	be	processed	and	actioned	by	the	server	to
return	results.	To	add	a	form	to	our	webpage,	we	start	by	using	the	 <form> 	element.

We	now	need	to	add	a	way	for	our	user	to	input	some	data.	So,	we	add	an	 <input> 	element	to	our	new	form.

There	are	various	types	of	input	fields	and	options	available,	which	can	be	set	using	a	value	for	the	 type 	attribute.
Options	include,	for	example

text
password
radio	button
checkbox
submit

forms	-	example	usage

<form>
		Text	field:	<input	type="text"	name="textfield"	/>
</form>

References

MDN
HTML	developer	guide

W3C
HTML	Attribute	Syntax

https://developer.mozilla.org/en-US/docs/Web/Guide/HTML
http://www.w3.org/TR/html-markup/syntax.html#syntax-attributes

