
Version control

what is version control?

setting up Git

simple command-line usage

Git basics

Version control - intro

ensure we keep track of changes, updates, contributions, suggested
mods...

could try old, and error-prone, tracking of directories etc

version control tool such as Git

coding style known as exploratory coding
researching, learning, checking what does and does not work correctly...

often used methodology for coders, and small groups as well

can lead to many changes and updates in code

Version control - what is version control?

very basic form of version control used on a regular basis
copying, replicating folders, documents etc

compare updates between old and new copies & revert back to older
version
very basic form of version control

software development version control
maintain defined, labelled points in our code

easily refer back to them or revert to an earlier state if needed

important tool for collaborative work with other developers

number of different, and popular, version control tools over the last few
years
Subversion, Mercurial, Git...

by 2010 Subversion held approximately 33.4% of the market for version
control
Git is believed to have only held approximately 2.7%, and Mercurial a paltry 0.7%

by 2013, Git usage was almost as high as Subversion, and it continues to
grow in popularity

Git's popularity largely due to preference for distributed version control
Atlassian's switch from Subversion to Git in 2012 also helped

Image - Version control usage (2010-2013)

Source - RedMonk

http://redmonk.com/sogrady/2013/12/19/dvcs-and-git-2013/#ixzz2qyfVpSR9

Image - Version control change in usage (2010-
2013)

Source - RedMonk

http://redmonk.com/sogrady/2013/12/19/dvcs-and-git-2013/#ixzz2qyfVpSR9

Version control - setting up Git

simple installers available for Git

choose platform's installer from
git

follow simple instructions to install

full install instructions for various Linux distributions
git - Linux downloads

for Debian/Ubuntu based APT distributions
apt-get install git

http://git-scm.com/downloads
http://git-scm.com/download/linux

Version control - Git GUIs

many GUIs available for working with Git
Git GUIs

including specific GUIs for GitHub
GitHub desktop clients

still beneficial and quicker to work with command-line
quick and easy to navigate files, directories...

work with Git and version control in general

https://git-scm.com/download/gui/linux
https://desktop.github.com/

Image - OS X Terminal application

Command-line - Navigating directory and files

A few examples

check the current directory (pwd = print working directory.)

pwd

check the contents of the current directory (lists working directory)

ls

this command allows us to change directory

cd

in the working directory, we can create a new directory

mkdir

Image - Command-line examples

Git basics - Part 1

Configure user/developer details

set details for username and user email
global flag can set these details for all work within our local instance of Git

git config --global user.name "424dev"

set preferred email address

git config --global user.email "424dev@gmail.com"

override for a specific repository in Git by omitting --global flag

git config user.name "424dev-single"

and the same principle applies for email.

check correct username for current repository

git config user.name

Git basics - Part 2

Tracking projects

start tracking project with Git
create new working directory (eg: at root of our home directory)

cd ~/

ensures we have changed to our home directory. Then check working
directory,

pwd

and then make a new directory for our client-side
development.

mkdir client-dev

Image - creating a client-dev directory

Git basics - Part 3

Add version control using Git to working directory

initialise our new repository in the working directory

git init

check hidden .git directory has been created

ls -a

and show contents of the .git directory

ls .git

Image - Initialise new Git repository

Git basics - Part 4

Start using our new repository

create an initial index.html file in project's working directory
create using preferred text editor or command-line, eg:

touch index.html

save new file, and check Git is correctly tracking our project

git status

outputs current status of working branch, defaults to master
outputs we have untracked files
files will include new index.html

add any new untracked file/s

git add index.html

or

git add *

for all untracked files.

Image - Git status and add

Git basics - Part 5

After adding our new index.html file to the
repository, we can commit these changes to the
initial state of the repository.

We use the following command

git commit -m "initial commit index.html"

-m flag permits useful message for commit
message added within quotation marks

should be useful and present tense

Image - First commit and message

Git basics - Part 6

initial commit has saved a defined point in our work
one we can revert to if needed

check git status and there should be nothing else to commit
working directory should be clean

Git has set our files ready for tracking

repeat this process as we make further changes and updates
freeze defined points within our project

check recent commits, and view a record

git log

Git basics - Part 7

Git revisions

we've seen Git's simple linear commits
presumes file has one parent

child commits detail this linear revision of content

a Git commit can store multiple parents and children

eg: commit history might include
revisions to a single file

addition or deletion of new files

merging of files to different branches

further additions...

Git basics - useful commands

Git command Expected Outcome

git config user.name "..." sets username for current repo

git config --global user.name
"..."

sets username for all repos (unless overridden per repo)

git config user.email "..." sets user's email address for current repo

git config --global user.email
"..."

sets user's email address for all repos (unless overridden per
repo)

git init initialise a Git repository in the current working directory

git status output current status of repo in current working directory

git add "..." define specific file in current repo for next commit

git add * define all files in current repo for next commit

git commit -m "..." commit defined files (set using git add) with message

git log output commit history for current repo

