
Extra	Notes	-	CSS	-	Grid	Layout	Guide
A	general	guide	to	CSS	Grid	Layout.

Contents

intro
general	concepts	and	usage
grid	container
what	is	a	grid	track?
fr 	unit	for	tracks

repeat() 	notation	for	 fr

implicit	and	explicit	grid	creation
track	sizing
grid	lines

positioning	against	lines

grid	cell
grid	area
add	some	gutters
demos

intro

Grid	layout	with	CSS	is	useful	for	structure	and	organisation	in	a	HTML	page.	Its	usage	may	be	considered	akin	to
previous	layout	options	with	tables,	thereby	enabling	a	developer	to	add	columns	and	rows	to	a	page.

However,	a	grid	layout	enables	more	complex	and	interesting	layout	options,	including	overlap	and	layers.

general	concepts	and	usage

A	grid	may	be	composed	of	rows	and	columns,	thereby	forming	an	intersecting	set	of	horizontal	and	vertical	lines.

Elements	may	be	added	to	the	grid	with	reference	to	this	structured	layout.

Grid	layout	in	CSS	includes	the	following	general	features,

additional	tracks	for	content
option	to	create	more	columns	and	rows	as	needed	to	fit	dynamic	content

control	of	alignment
align	a	grid	area	or	overall	grid

control	of	overlapping	content
permit	partial	overlap	of	content
an	item	may	overlap	a	grid	cell	or	area

placement	of	items	-	explicit	and	implicit
precise	location	of	elements	&c.
use	line	numbers,	names,	grid	areas	&c.

variable	track	sizes	-	fixed	and	flexible
e.g.	specify	pixel	size	for	track	sizes	or	use	flexible	sizes	with	percentages	or	new	 fr 	unit



grid	container

We	may	define	an	element	as	a	grid	container	using	 display:	grid 	or	 display:	inline-grid .

Then,	any	children	of	this	element	become	grid	items.

e.g.

.wrapper	{
		display:	grid;
}

We	may	also	define	other,	child	nodes	as	a	 grid 	container.	Any	direct	child	nodes	to	a	grid	container	are	now
defined	as	grid	items.

what	is	a	grid	track?

In	a	grid,	rows	and	columns	are	defined	with	 grid-template-columns 	and	 grid-template-rows 	properties
respectively.

In	effect,	these	define	grid	tracks.

As	MDN	notes,

a	grid	track	is	the	space	between	any	two	lines	on	the	grid.

(https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Grid_Layout/Basic_Concepts_of_Grid_Layout)

So,	we	can	create	both	row	and	column	tracks.	e.g.

.wrapper	{
		display:	grid;
		grid-template-columns:	200px	200px	200px;
}

The	 wrapper 	class	now	includes	three	defined	columns	of	width	200px,	thereby	creating	three	tracks.

n.b.	a	track	may	be	defined	using	any	valid	length	unit,	not	just	 px .

fr 	unit	for	tracks

CSS	Grid	now	introduces	an	additional	length	unit	for	tracks,	 fr .

fr 	unit	represents	fractions	of	the	space	available	in	the	current	grid	container.

e.g.

.wrapper	{
		display:	grid;
		grid-template-columns:	1fr	1fr	1fr;
}

However,	we	may	also	apportion	various	space	to	tracks,	e.g.

.wrapper	{
		display:	grid;
		grid-template-columns:	2fr	1fr	1fr;
}

This	still	creates	three	tracks	in	the	grid,	but	the	overall	space	effectively	now	occupies	four	parts.	Two	parts	for	 2fr ,
and	one	part	each	for	the	remaining	two	 1fr .



We	may	also	be	specific	in	this	sub-division	of	parts	in	tracks,	e.g.

.wrapper	{
		display:	grid;
		grid-template-columns:	200px	1fr	1fr;
}

The	first	track	will	occupy	a	width	of	 200px ,	whilst	the	remaining	two	tracks	will	each	occupy	1	fraction	unit.

repeat() 	notation	for	 fr

For	larger,	repetitive	grids,	it's	easier	to	use	the	 repeat() 	notation	to	define	multiple	instances	of	the	same	track.

e.g.

.wrapper	{
		display:	grid;
		grid-template-columns:	repeat(4,	1fr);
}

This	will	now	create	four	separate	tracks,	each	defined	as	 1fr 	unit's	width.

Such	 repeat() 	notation	may	also	be	used	as	part	of	the	track	definition.	e.g.

.wrapper	{
		display:	grid;
		grid-template-columns:	200px	repeat(4,	1fr)	100px;
}

This	example	will	create	one	track	of	 200px 	width,	then	four	tracks	of	 1fr 	width,	and	finally	a	single	track	of	 100px
width.

repeat() 	may	also	be	used	with	multiple	track	definitions,	thereby	repeating	multiple	times

e.g.

.wrapper	{
		display:	grid;
		grid-template-columns:	repeat(4,	1fr	2fr);
}

This	will	now	create	eight	tracks,	the	first	four	of	width	 1fr 	and	the	remaining	four	of	 2fr .

implicit	and	explicit	grid	creation

In	the	above	examples,	we	simply	define	tracks	for	the	columns,	and	CSS	grid	will	then	apportion	content	to	required
rows.

However,	we	may	also	define	an	explicit	grid	of	columns	and	rows,	e.g.

.wrapper	{
		display:	grid;
		grid-template-columns:	repeat(2	1fr);
		grid-auto-rows:	150px;
}

This	slightly	modifies	an	implicit	grid	to	ensure	each	row	is	 200px 	tall.



track	sizing

A	grid	may	require	tracks	with	a	minimum	size,	and	the	option	to	expand	to	fit	dynamic	content.

This	might	be	as	simple	as	ensuring	that	a	track	does	not	collapse	below	a	certain	height	or	width,	and	that	it	has	the
option	to	expand	as	necessary	for	the	content.

Grid	provides	a	 minmax() 	function,	which	we	may	use	with	rows,	e.g.

.wrapper	{
		display:	grid;
		grid-template-columns:	repeat(2	1fr);
		grid-auto-rows:	minmax(150px,	auto);
}

This	example	ensures	that	each	rows	will	occupy	a	minimum	of	 150px 	in	height,	and	still	be	able	to	stretch	to	contain
the	tallest	content.

However,	the	whole	row	will	expand	to	meet	the	 auto 	height	requirements,	thereby	affecting	each	track	in	the	row.

grid	lines

A	grid	is	defined	using	tracks,	and	not	lines	in	the	grid.

However,	the	created	grid	also	helps	us	with	positioning	by	providing	numbered	lines.

e.g.	in	a	three	column,	two	row	grid	we	have	the	following,

four	lines	for	the	three	vertical	columns
three	lines	for	the	two	horizontal	rows

Such	lines	start	at	the	left	for	columns,	and	at	the	top	for	rows.

n.b.	line	numbers	start	relative	to	written	script,	e.g	left	to	right	for	western,	right	to	left	for	arabic...

positioning	against	lines

When	we	place	an	item	in	a	grid,	we	use	these	lines	for	positioning,	and	not	the	tracks.

This	is	reflected	in	the	usage	of	 grid-column-start ,	 grid-column-end ,	 grid-row-start ,	and	 grid-row-end
properties.

In	effect,	items	in	the	grid	may	be	position	from	one	line	to	another,	e.g.	column	line	1	to	column	line	3.

n.b.	default	span	for	an	item	in	a	grid	is	one	track,	e.g.	define	column	start	and	no	end	-	default	span	will	be	one
track...

e.g.

.content1	{
		grid-column-start:	1;
		grid-column-end:	4;
		grid-row-start:	1;
		grid-row-end:	3;
}

grid	cell

A	cell	is	the	smallest	unit	on	the	defined	grid	layout.

In	effect,	it	is	conceptually	the	same	as	a	cell	in	a	standard	table.



So,	as	content	is	added	to	the	grid,	it	will	be	stored	in	one	cell.

grid	area

However,	we	may	also	store	content	in	multiple	cells,	thereby	creating	grid	areas.

Grid	areas	must	be	rectangular	in	shape.

e.g.	a	grid	area	may	span	multiple	row	and	column	tracks	for	the	required	content.

add	some	gutters

Gutters	may	be	created	using	the	gap	property	for	either	column	or	row,	 column-gap 	and	 row-gap .

e.g.

.wrapper	{
		display:	grid;
		grid-template-columns:	repeat(4,	1fr	2fr);
		column-gap:	5px;
		row-gap:	10px;
}

n.b.	any	space	used	for	gaps	will	be	determined	prior	to	assigned	space	for	 fr 	tracks.

Demos

grid	basic	-	page	zones	and	groups
grid	basic	-	article	style	page
grid	layout	-	articles	with	scroll

http://linode4.cs.luc.edu/teaching/cs/demos/424/2018/css-grid-layout/basic/
http://linode4.cs.luc.edu/teaching/cs/demos/424/2018/css-grid-layout/basic2/
http://linode4.cs.luc.edu/teaching/cs/demos/424/2018/articles/basic3-progress/

