
Notes - HTML5 Canvas - Interaction

Dr Nick Hayward

A general guide to using HTML5 canvas with user interaction.

Contents

intro
canvas interaction

move a ball with keyboard controls
keyboard listeners
extend Ball prototype - userControl()
update move() method
abstract width and height

update userControl() method
add userMove() method to Ball prototype
add image as shape to move
extend prototype for Sprite

check collisions
add blocks with colour
internal canvas collisions

more collision detection
axis-aligned bounding box

intro

The HTML5 element <canvas> allows us to draw various graphics using JavaScript.

With this combination, we can draw many different shapes using lines, curves, objects, text &c.

We may also add interaction to allow a user to move shapes, and generally interact with the canvas environment.

n.b. these notes are a continuation to the complementary canvas-drawing.pdf notes.

canvas interaction

move a ball with keyboard controls

We're going to create a new example, which allows a user to move a ball around the canvas using keyboard
controls.

In this example, we need to draw a ball, listen for specific keypress commands, such as up and down, and then
update the animation of the ball to reflect these keypresses.

In effect, we're allowing a user to directly control the animation of the shape on the canvas.

We'll setup our initial example with a canvas and context, and then draw a circle to the canvas to represent the
ball to move.

Then, we can start to add logic to control the ball, and update the animation.

We're going to use our previous Ball constructor to create the required ball object, and extend the prototype
for user control of the ball object.

keyboard listeners

add listeners to the canvas for specifc keypress events
e.g. up, down, left, and right

// add event listener for keypress - e.g. up arrow key...
window.addEventListener('keydown', function (event) {
 // get code for key presses
 var key = event.keyCode;
 console.log("key pressed = " + key);
 ball.userControl(key);
})

each keypress event returns a unique code
use code to identify key pressed by user
37 = LEFT arrow
38 = UP arrow
39 = RIGHT arrow
40 = DOWN arrow

call userControl() method for each keypress

extend Ball prototype - userControl()

// 4. update prototype - user control
Ball.prototype.userControl = function(key) {
 // key - UP arrow
 if (key === 38) {
 this.xSpeed = 0;
 this.ySpeed = -10;
 context.clearRect(0, 0, 400, 400);
 ball.move();
 ball.draw();
 }
};

conditional check for key code - 38 = UP arrow
x set to 0 to prevent horizontal move
y set to -10 to move up canvas
canvas cleared to allow animation frames to be drawn
call prototype method draw() on ball object
call prototype method move() on ball object

Example - move ball with keyboard control

update move() method

update move() to check canvas boundaries
stop ball from leaving canvas

// check ball relative to boundaries - canvas edge
 if (this.x < 0) {
 this.x = canvas.width;
 } else if (this.x > canvas.width) {
 this.x = 0;
 } else if (this.y < 0) {
 this.y = canvas.height;
 } else if (this.y > canvas.height) {
 this.y = 0;
 }

Example - update move() to check canvas boundaries

abstract width and height

canvas height and width need to be used throughout JS logic
abstract to variables

// define canvas width and height
var cHeight = canvas.height;
var cWidth = canvas.width;

update userControl() method

// 4. update prototype - user control
Ball.prototype.userControl = function(key) {
 /*
 * 37 = LEFT
 * 38 = UP
 * 39 = RIGHT
 * 40 = DOWN
 */
 if (key === 37) {
 ball.userMove(-15, 0);
 } else if (key === 38) {
 ball.userMove(0, -15);
 } else if (key === 39) {
 ball.userMove(15, 0);
 } else if (key === 40) {
 ball.userMove(0, 15);

http://linode4.cs.luc.edu/teaching/cs/demos/125/drawing/basic-game/basic-ball-move1/
http://linode4.cs.luc.edu/teaching/cs/demos/125/drawing/basic-game/basic-ball-move2/

 }
};

add conditional check for four keys
LEFT, UP, RIGHT, DOWN

abstract user actioned movement of ball
add userMove() method to Ball prototype

add userMove() method to Ball prototype

// 5. update prototype - user movement of ball
Ball.prototype.userMove = function (xS, yS) {
 // clear canvas for animation
 context.clearRect(0, 0, cWidth, cHeight);
 // update x and y speed
 this.xSpeed = xS;
 this.ySpeed = yS;
 // draw ball and move...
 ball.move();
 ball.draw();
}

accept parameter for speed along X and Y axis
clear canvas - use variables for canvas width and height
call move() method on ball object
call draw() method on ball object

Example - move ball on 4-point axis

add image as shape to move

abstract drawing required image to canvas
need to call this function for each animation frame

// define sprite draw function
function drawSprite(dx, dy) {
 // 1. define optional image size
 var img = new Image();

 // image source file
 img.src = './assets/images/player.png';

 img.onload = function() {
 // context.drawImage(image, dx, dy, dw, dh)
 context.drawImage(img, dx-30, dy-40, 60, 40);
 }
}

http://linode4.cs.luc.edu/teaching/cs/demos/125/drawing/basic-game/basic-ball-move3/

dx and dy passed as parameter values
minus image width and height to set start position for animation

extend prototype for Sprite

add draw() method
call drawSprite() method - pass start x & y

// 1. update prototype - method to draw sprite
Sprite.prototype.draw = function () {
 // draw image as sprite - specify start x and y coordinates
 drawSprite(this.x, this.y);
};

Example - move sprite image

check collisions

add blocks with colour

draw some blocks for internal collision
define array with objects
specify x, y, width, height, color for blocks

// define game blocks
var blockDetails = [
 {
 x: 25,
 y: 25,
 width: 50,
 height: 10,
 color: 'blue'
 },
 {
 x: 150,
 y: 175,
 width: 50,
 height: 10,
 color: 'red'
 }
];

add custom function to draw blocks to canvas

function drawBlocks(blocks) {
 // iterate through blocks
 for (i = 0; i < blocks.length; i++) {

http://linode4.cs.luc.edu/teaching/cs/demos/125/drawing/basic-game/basic-sprite-move1/

 context.fillStyle = blocks[i]['color'];
 context.fillRect(blocks[i]['x'], blocks[i]['y'], blocks[i]
['width'], blocks[i]['height']);
 }
}
// draw blocks to canvas
drawBlocks(blockDetails);

pass array as parameter to function
iterate through array of blocks
set fillStyle for block to draw
draw a rectangle to canvas for block x, y, height, and width

Example - move sprite image

internal canvas collisions

check ball position against block position
x and y against block values

// 3. update prototype - check collision
Ball.prototype.checkCollision = function (blocks) {
 // iterate through blocks and check collision
 for (i = 0; i < blocks.length; i++) {
 // start start and end of block - x & y axis
 let blockStartX = blocks[i]['x'];
 let blockEndX = (blocks[i]['x'] + blocks[i]['width']);
 let blockStartY = blocks[i]['y'];
 let blockEndY = (blocks[i]['y'] + blocks[i]['height']);
 // check block collisions - allow for radius of ball
 if (this.x >= blockStartX-5 && this.x <= blockEndX+5 &&
this.y >= blockStartY-5 && this.y <= blockEndY+5) {
 console.log('collision at block = ' + this.x);
 }
 }
}

call this method in the userMove() method

// check collisions
 ball.checkCollision(blockDetails);

Example - check collision against blocks

Canvas interaction

update movement to 8-point axis

http://linode4.cs.luc.edu/teaching/cs/demos/125/drawing/basic-game/basic-ball-move4/
http://linode4.cs.luc.edu/teaching/cs/demos/125/drawing/basic-game/basic-ball-move5/

a player may also use other available combinations to move the shape
at one of 4 available angles of 45 degrees...

 -x -y +x -y
 \ | /
 \ | /
 ---- shape ----
 / | \
 / | \
 -x +y +x +y

more collision detection

We may also consider variant options for 2-D collision detection within a defined canvas and context.

e.g.

axis-aligned bounding box
game engines such as

Phaser
MelonJS

References

MDN - Prototype
W3Schools - HTML5

media elements
canvas element

W3Schools - Prototypes
MDN JS - keyboard event

event listener

https://phaser.io/
http://melonjs.org/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/prototype
https://www.w3schools.com/html/html_media.asp
https://www.w3schools.com/html/html5_canvas.asp
https://www.w3schools.com/js/js_object_prototypes.asp
https://developer.mozilla.org/en-US/docs/Web/API/KeyboardEvent
https://www.w3schools.com/jsref/met_element_addeventlistener.asp

