
Comp 125 - Visual Information Processing

Spring Semester 2019 - Week 9 - Friday

Dr Nick Hayward

CSS Basics - complex selector - part 1

our DOM will often become more complicated and detailed

depth and complexity will require more complicated selectors as well

lists and their list items are a good example

 unordered first

 unordered second

 unordered third

 ordered first

 ordered second

 ordered third

two lists, one unordered and the other ordered

style each list, and the list items using rulesets

ul {

 border: 1px solid green;

}

ol {

 border: 1px solid blue;

}

Demo - Complex Selectors - Part 1

Demo - Complex Selectors Part 1

http://linode4.cs.luc.edu/teaching/cs/demos/424/week3/demo3/

CSS Basics - complex selector - part 2

add a ruleset for the list items,

applying the same style properties to both types of lists

more specific to apply a ruleset to each list item for the different lists

ul li {

 color: blue;

}

ol li {

 color: red;

}

also be useful to set the background for specific list items in each list

li:first-child {

 background: #bbb;

}

pseudoclass of nth-child to specify a style for the second, fourth etc

child in the list

li:nth-child(2) {

 background: #ddd;

}

Demo - Complex Selectors - Part 2

Demo - Complex Selectors Part 2

http://linode4.cs.luc.edu/teaching/cs/demos/424/week3/demo4/

CSS Basics - complex selector - part 3

style odd and even list items to create a useful alternating pattern

li:nth-child(odd) {

 background: #bbb;

}

li:nth-child(even) {

 background: #ddd;

}

select only certain list items, or rows in a table etc

e.g. every fourth list item, starting at the first one

li:nth-child(4n+1) {

 background: green;

}

for even and odd children we're using the above with convenient

shorthand

other examples include

last-child

nth-last-child()

many others...

Demo - CSS Complex Selectors - Part 3

Demo - Complex Selectors Part 3

http://linode4.cs.luc.edu/teaching/cs/demos/424/week3/demo5/

CSS Basics - cascading rules - part 1

CSS, or cascading style sheets, employs a set of cascading rules

rules applied by each browser as a ruleset conflict arises

e.g. issue of specificity

p {

 color: blue;

 }

p.p1 {

 color: red;

 }

the more specific rule, the class, will take precedence

issue of possible duplication in rulesets

h3 {

 color: black;

}

h3 {

 color: blue;

}

cascading rules state the later ruleset will be the one applied

blue heading instead of black...

CSS Basics - cascading rules - part 2

simple styling and rulesets can quickly become compounded and

complicated

different styles, in different places, can interact in complex ways

a powerful feature of CSS

can also create issues with logic, maintenance, and design

three primary sources of style information that form this cascade

1. default styles applied by the browser for a given markup language

e.g. colours for links, size of headings...

2. styles specific to the current user of the document

often affected by browser settings, device, mode...

3. styles linked to the document by the designer

external file, embedded, and as inline styles per element

CSS Basics - cascading rules - part 3

basic cascading nature creates the following pattern

browser's style will be default

user's style will modify the browser's default style

styles of the document's designer modify the styles further

CSS Basics - inheritance

CSS includes inheritance for its styles

descendants will inherit properties from their ancestors

style an element

descendants of that element within the DOM inherit that style

body {

 background: blue;

}

p {

 color: white;

}

p is a descendant of body in the DOM

inherits background colour of the body

this characteristic of CSS is an important feature

helps to reduce redundancy and repetition of styles

useful to maintain outline of document's DOM structure

most styles follow this pattern but not all

margin, padding, and border rules for block-level elements not

inherited

CSS Basics - fonts - part 1

fonts can be set for the body or within an element's specific ruleset

we need to specify our font-family,

body {

 font-family: "Times New Roman", Georgia, Serif;

}

value for the font-family property specifies preferred and fall-back fonts

Times New Roman, then the browser will try Georgia and Serif

"" - quotation marks for names with spaces...

n.b. "" added due to CSS validator requesting this

standard - it's believed to be a legacy error with the

validator...

CSS Basics - fonts - part 2

useful to be able to modify the size of our fonts as well

body {

 font-size: 100%;

}

h3 {

 font-size: x-large;

}

p {

 font-size: larger;

}

p.p1 {

 font-size: 1.1em;

}

set base font size to 100% of font size for a user's web browser

scale our other fonts relative to this base size

CSS absolute size values, such as x-large

font sizes relative to the current context, such as larger

em are meta-units, which represent a multiplier on the current font-size

relative to current element for required font size

1.5em of 12px is effective 18px

em font-size scales according to the base font size

modify base font-size, em sizes adjust

try different examples at

W3 Schools - font-size

http://www.w3schools.com/cssref/pr_font_font-size.asp

Demo - CSS Fonts

Demo - CSS Fonts

JSFiddle - CSS Fonts

http://linode4.cs.luc.edu/teaching/cs/demos/424/week3/demo6/
https://jsfiddle.net/ancientlives/em4ot8zt/

CSS Basics - fonts - part 3

rem unit for font sizes

size calculated against root of document

body {

 font-size: 100%;

}

p {

 font-size: 1.5rem;

}

element font-size will be root size * rem size
e.g. body font-size is currently 16px

rem will be 16 * 1.5

CSS Basics - custom fonts

using fonts and CSS has traditionally been a limiting experience

reliant upon the installed fonts on a user's local machine

JavaScript embedding was an old, slow option for custom fonts

web fonts are a lot easier

Google Fonts

from the font options, select

required fonts

add a <link> reference for the font to our HTML document

then specify the fonts in our CSS

p {

 font-family: 'Roboto';

}

https://www.google.com/fonts

Demo - CSS Custom Fonts

Demo - CSS Custom Fonts

JSFiddle - CSS Custom Fonts

http://linode4.cs.luc.edu/teaching/cs/demos/424/week3/demo7/
https://jsfiddle.net/ancientlives/o621f2fj/

References

MDN

CSS documentation

CSS Selectors

W3Schools

CSS

CSS Box Model

CSS - Selectors Reference

https://developer.mozilla.org/en-US/docs/Web/CSS
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Selectors
http://www.w3schools.com/css/default.asp
https://www.w3schools.com/css/css_boxmodel.asp
https://www.w3schools.com/cssref/css_selectors.asp

