Comp 125 - Visual Information Processing

Spring Semester 2019 - Week 6 - Friday

Dr Nick Hayward

Fun exercise - using objects

= create an object or objects with information about an archive
* include name and location of the archive

= use a combination of arrays and objects to store information about
books in the archive - minimum five books
e include author's name, book title, date of publication, number of pages...

= output to the document all of the names of the books in the
archive
e output to the document all information for at least one book in the archive

Output answers to the document with link
breaks between results.

HTML & JavaScript - create a game - check
guess letter

check letter against game word - part 4

= use conditional statement to check letter
* check against gameWord - should return true boolean
* check against answers - should return false boolean

// check letter against game word & not in answers - check for duplicate letter g

if (gameWord.includes(letter) === true && answers.includes(letter) === false) {
} else {

}

HTML & JavaScript - create a game - check
guess letter

check letter against game word - part 5

= then use for loop through gameWord
» check guess letter against each letter in gameWord
* use loop index i to check each value in gameWord

// loop through gameWord

for (i = 0; i < gameWord.length; i++) {
// check letter against each value in gameWord

if (gameWord[i] === letter) {
// add letter to answers array at matching index position

answers[i] = letter;
}

}

= add guess letter to answers array using loop index i

HTML & JavaScript - create a game - check
guess letter
check letter against game word - part 6

= also need to keep a record of wrong letter guesses
= use lettersToGuess variable

= value is initially set to length of game word

// set value for letters to guess from random word

var lettersToGuess = gameWord.length;
= then decrement in loop for letter check in gameWord

lettersToGuess--;

HTML & JavaScript - create a game - check
guess letter

check letter against game word - part 7

= use lettersToGuess to check for end of game
* player wins if value reaches 0

// check if gameWord has been guessed correctly

if (lettersToGuess === 0) {
console.log('game over...player won');
document.getElementById('guessLetter').innerHTML = 'GAME OVER: word guessed c

// exit game and reset...need to add

HTML & JavaScript - create a game - verbose
working example

conditional statement and for loop

// check letter against game word & not in answers - check for duplicate letter g
if (gameWord.includes(letter) === true && answers.includes(letter) === false) {
console.log('letter has been found...' + gameWord.includes(letter));
// loop through gameWord
for (i = 0; i < gameWord.length; i++) {
// check letter against each value in gameWord
if (gameWord[i] === letter) {
console.log('letter = index ' + i);
// add letter to answers array at matching index position
answers[i] = letter;
// decrement remaining letters to guess to win game...

lettersToGuess--;

console.log('letters left to find = ' + lettersToGuess);
// update game progress to player
var lettersOutput = answers.join(" "); // create string from answers array
document.getElementById('wordStatus').innerHTML = 'guess word: ' + lettersO
}
}
// check if gameWord has been guessed correctly
if (lettersToGuess === 0) {
console.log('game over...player won');
document.getElementById('guessLetter').innerHTML = 'GAME OVER: word guessed c
// exit game and reset...need to add
}
} else {
console.log('letter not found...');
document.getElementById('guessLetter').innerHTML = 'letter not found - please t

// draw output to hangman...need to add

= Hangman Game - v0.3

http://linode4.cs.luc.edu/teaching/cs/demos/125/games/hangman/v0.3/

HTML & JavaScript - create a game - restart
game

reset game and load new game word

= need to reset the game after GAME OVER

 player wins or loses...

= game requires reloading, resetting of variables, data structures...
* might use simple browser refresh
* better option is to dynamically reset game logic

" need to abstract code to functions...

HTML & JavaScript - create a game

work left to complete

= code is toO verbose

= code needs abstraction

= need to introduce functions for better code structure and reuse
= reset option necessary for GAME OVER

= hangman figure needs to be drawn to HTML document

= small updates to usability
* clear letter in input field after guess button pressed
* add event listener for return key press in input field
* add autofocus to input field

HTML & JavaScript - create a game - quick
updates

update usability on input field

= update event listener for mouse click on guess button

= reset value for input field after click event
* use empty string to clear input field
* placeholder text will then be shown in input field

// reset input field

document.getElementById('guess').value = "";

= reset focus on input field after click event

// reset focus on input field

document.getElementById('qguess').focus();

JavaScript - functions - intro

= game code needs LOTS of abstraction and refactoring
= functions are a great way to help such abstraction and reuse

= a3 function is a common and useful option for grouping code
* organise for reuse within an application

= reuse of functions also helps provide better abstraction of logic

= group and store functionality in JS functions
 use repeatedly by calling the same function

= functions also help us organise our code and application logic
* providing better structure and design to our code

= functions help us test our application code more easily
e creating manageable chunks of code and logic

= we may also define accepted parameters for a functio
* enabling customisation and broader usage of contained code and logic

= return values for a given function may be customised
* relative to passed arguments as we call a function

JavaScript - functions - basic structure

= basic structure for function syntax

function () {

...code to excute...

}

= we can extend this syntax
e add a name for the function
* define accepted parameter (or parameters)
e use and return code from a function...

JavaScript - functions - basic usage - part |

define function with name and parameter

= add a custom name for a function
e this function will log a string to the console...

function sayHello () {
console.log('Hello...');

}

= execute this code by calling the function's name
* add parentheses to denote name as function

sayHello();

JS Functions - name and call

add a custom function name and call...

cayHello() {
console. log('Hello..."};

sayHellu{]ﬂ

JS - function call |

JavaScript - functions - basic usage - part 2

define function as value of variable
= also assign a function as the value of a named variable

var greeting = function () {
console.log('Hello, how are you?');
}i
= then call this function using the same pattern

greeting();

JS Functions - name and call - example 2

add a custom function name and call as value of
variable...

Ereceting =
console.log('Hello, how are you?');

greeting();
Hello, how are you?
L

JS - function call 2

JavaScript - functions - basic usage - part 3

return value

= previous examples included a return value of undefined

= return value is value that a function will actually output
* for reuse elsewhere in the application

= console.log() returns its own value
* not value for custom function

= return value will always be undefined
* unless we specify a return value for the function

JavaScript - functions - basic usage - part 4

parameters and arguments

= custom functions may also be modified by defining accepted
parameters
* parameter values may be used in the executed logic

= parameters allow a developer to pass values into the function
* may be used to modify the logic and executed code

= parameters are always defined between a function's parentheses

= as we call the function, we pass the required values as
arguments
e also specified between the parentheses for the function call

JavaScript - functions - basic usage - part 5

using parameters and arguments - example
= structure for a function with parameter

function (parameter) {
// test output of parameter

console.log("function parameter = " + parameter);

}
= example usage might be as follows

function sayHello(name) {
// output greeting to person

console.log('Hello' + name + ', how are you?');

}

= then call this function
* passing an argument for the required function parameter

sayHello('Amelia');

JS Functions - parameters and arguments -
example

add a custom function with a parameter, and call
function with passed argument...

sayHello{name)} {
console.log('Hello * + name + ',

sayHello("Amslia'};

Hello Amelia, how are you?

£

JS - function call 3

References

= W3Schools
e |S - conditionals
e |S - For loop
e |S - functions

https://www.w3schools.com/js/js_if_else.asp
https://www.w3schools.com/js/js_loop_for.asp
https://www.w3schools.com/js/js_functions.asp

