Comp 125 - Visual Information Processing

Spring Semester 2019 - Week 3 - Monday

Dr Nick Hayward

JS Basics - data types - extras

= two more data types to consider, e.g. undefined and null

* undefined

* a variable declared or updated without a value is undefined
o its data type will also be undefined
o e.g.

// variable declared without value and data type

var greeting;
// update variable to empty - specify value and type as “undefined~

greeting = undefined;

= null

* sets the value of a variable to nothing
o data type will be set to object (this is known bug in JavaScript)

o e.g.

// declare varible with value set to nothing - type will be “object’

var greeting = null;

JS Basics - data types - undefined vs null

there is a difference between undefined and null
difference is the data type

undefined data type = undefined

null data type = object

both values will return nothing - i.e. they will be empty

data types will return different results

JS Basics - data types - extras

Declare variables with undefined and null...

initial greeting = undefined
new greeting = Live long and prosper
updated greeting = undefined

= " + greeting + "</p>");

null greeting = null

+ greeting + "</p>");

ng = " + greeting + "</p>");

" + greeting + "</p>");

JavaScript - undefined and null

JS Basics - data types - check typeof

Use typeof operator to check data type...

test] vaniable type = object
test2 variable type = undefined
test3 variable type = undefined

JavaScript - check data type

JS Basics - naming variables

= we need to be careful as we enter variable names

* misspell a variable name and JavaScript will return an error
o known as a ReferenceError

= variable names may not contain spaces
* a basic use of multiple words, e.g.

var travelbook = "Hannibal's Footsteps";

var noofwords = 1997;

= difficult to read variable name with this style
e camel case is preferred style for multiple word variable names, e.g.

= each word's first character is capitalised
e convention for variable names is lowercase for first character

* using camelCase we can write our variables as follows,

var travelBook = "Hannibal's Footsteps";

var noOfWords = 1997;

Fun exercise - using variables and operators

» calculate the number of seconds in an hour

= using the number of seconds in an hour, calculate the
number of seconds in a day

= using number of seconds in a day, calculate the number of
seconds in a year

= using number of seconds in a year, calculate the number
of seconds in your current age in years, e.g. 22 years

Output each answer to the document with a
line break between each result.

JS Data Structures - intro

= store data values as individual values in a single variable
e strings, numbers...
e useful for storing a word, phrase...

= we also need to be able to store large amounts of data
* e.g. multiple values in a single variable

= |arge amounts of data will need to be organised, e.g.
e a numerical index of values
* a keyl/value pair to reference and search values

= |arge amounts of data can be stored in data structures

= data structures in JavaScript
* indexed collections - arrays...
* keyed collections - maps, sets...

Further details,

= MDN - JavaScript data types and data structure

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Data_structures

JS Data Structures - arrays - intro

= an array allows us to store multiple values in a single variable
* includes associated index, and various object properties such as length

= arrays are one of the most common data types and structures in
programming

= using an array, we may now handle various collections of items
= e.g. names in a sports team in an array instead of separate variables

= the size of an array is also dynamic, e.g.
e add a new player's name to the array
* remove an existing name from the array

= arrays are objects in JavaScript
* provides access to functions (methods) to work with arrays
* arrays include their own properties as well, e.g. length

Further details,

= W3Schools - Arrays
e MDN - Array

https://www.w3schools.com/js/js_arrays.asp
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array

JS Data Structures - arrays - creating an array

= create an array in JavaScript using two options,
* using the built-in Array constructor

* using array literals []

// using array literals to create new array
var players = ["Amelia", "Emma", "Daisy", "Yvaine"];
// using Array constructpr tp create new array

var places = new Array("Paris", "Nice", "Marseille");

= array literals are more common option for creating new array
 Array constructor useful for extending and customising array properties &c.

* offers advanced options for customisation...

JS Data Structures - arrays - access

= use index of an array to retrieve stored values, e.g.

players[0];
"Amelia"
places|[1];

"Nice"

Player no.3 = Daisy

JavaScript - array access

JS Data Structures - arrays - set, change, add
elements

= modify data in an array using a specific index number, e.g.
players[3] = "Rose";

= updates value in players array from Yvaine to Rose

= if we specify an index position beyond the current bounds of the
array, e.g.

players[5] = "Violet";
= array will dynamically expand to add this new value

= index position 4 will now be set to undefined

= array's length property will also be updated to record new size

JS Data Structures - arrays - set, change, add
elements

Modify an array by adding or updating values...

JavaScript - array access

JS Data Structures - arrays - set, change, add
elements

add new items to array - dynamically expand...

players[3] = "Rose";
players[5] = "Violet";

players;

¢ v(e) [

JavaScript - array access

JS Data Structures - arrays - mix data types

= another benefit of storing data in an array is mixed data types
* e.g. we can store numbers with strings...

var players = [1, "Amelia", 42, "Yvaine", "Daisy"];

= we can also store an array in an array
e creates a multi-dimensional array

e store a number, string, and an inner array

var players = [6, "names", ["Amelia", "Emma", "Daisy", "Yvaine", "Rose", "Violet"

JS Data Structures - arrays - multi-dimensional
access

= then access value in an inner array using familiar pattern of index
positions, e.g.

// create new multi-dimensional array
var players = [6, "names", ["Amelia", "Emma", "Rose", "¥Yvaine", "Daisy", "Violet"
// get value from inner array - fifth name

var fifthName = players[2][4];

JS Data Structures - arrays - multi-dimensional
access

access the inner array of a multi-dimensional
array...

fifth name from multi-dimensional array = Daisy

JavaScript - array access

