Comp 125 - Visual Information Processing

Spring Semester 2019 - Week 2 - Wednesday

Dr Nick Hayward

JS Basics - examples of coercion - part |

Coerce strings and numbers...

JavaScript - examples of type coercion

JS Basics - examples of coercion - part 2

Coerce strings, numbers, booleans...

= Number{a)

= Stringlb)

b
- 49
C

d = true
« true

String(d)

e = Number({d)
» 1

JavaScript - examples of type coercion

JS Basics - variables - part |

= symbolic container for values and data
= applications use containers to keep track and update values

m use a variable as a container for such values and data
e allow values to vary over time

= JS can emphasize types for values, does not enforce on the variable
* weak typing or dynamic typing
* |S permits a variable to hold a value of any type

= often a benefit of the language

= a quick way to maintain flexibility in design and development

JS Basics - variables - part 2

= declare a variable using the keyword var

= declaration does not include type information

var a = 49;

//double var a value

var a = a * 2;

//coerce var a to string

var a = String(a);

//output string value to console

console.log(a);

= var a maintains a running total of the value of a
= keeps record of changes, effectively state of the value

= state is keeping track of changes to any values in the application

JS Basics - variables - part 3

= use variables in JS to enable central, common references to our
values and data

= better known in most languages simply as constants

= S is similar
* creates a read-only reference to a value

value itself is not immutable, e.g. an object...

it's simply the identifier that cannot be reassigned

JS constants are also bound by scoping rules

= allow us to define and declare a variable with a value
* not intended to change throughout the application

= constants are often declared together
* uppercase is standard practice - although not a rule...

= form a store for values abstracted for use throughout an app

= |S normally defines constants using uppercase letters,
var NAME = "Philae";

= ECMAScript 6, ES6, introduces additional variable keywords

* eg const

const TEMPLE_NAME = "Philae";

= benefits of abstraction, ensuring value is not accidentally changed
* change rejected for a running app
e in strict mode, app will fail with an error for any change

JS Basics - comments

= |S permits comments in the code
= two different implementations
single line

//single line comment

var a = 49;

multi-line

/* this comment has more to say...
we'll need a second line */

var b = "forty nine";

JS Basics - logic - blocks & conditionals - part |

= simple act of grouping contiguous and related code statements
together
* known as blocks

= block defined by wrapping statements together
* within a pair of curly braces, {}

= blocks commonly attached to other forms of control statement

if (a > b) {
«..do something useful...

}

= conditional statements require a decision to be made
=]S includes many different ways we can express conditionals

= most common example is the 1 f statement
* if this given condition is true, do the following...
e 1if statement requires an expression between the parentheses

e evaluates as either true or false

JS Basics - logic - conditional statement

' [% aboutblank
<« C 1t | © aboutblank

variable ¢ = 27

JavaScript - conditional statement with variables

JS Basics - logic - blocks & conditionals - part 2

= additional option if this expression returns false
* using an else clause

if (a > b) {

console.log("a is greater than b...");
} else {
console.log("no, b is greater...");

}

= for an if statement, JS expects a boolean

= |S defines a list of values that it considers false
e eg 0.

= any value not on this list of false values will be considered true
e coerced to true when defined as a boolean

= conditionals in JS also exist in another form
* the switch statement

®* more to come...

JS Basics - logic - conditional statement

' [% aboutblank

& C 1} |® aboutblank

a is greater than b...

JavaScript - conditional statement

JS Basics - logic - loops

loops allow repetition of sets of actions until a condition fails
repetition continues whilst the requested condition holds
loops take many different forms and follow this basic behaviour

a loop includes the test condition as well as a block
* normally within curly braces
* block executes, an iteration of the loop has occurred
* four kinds of loop by default in S,

o for

o for/in

o while

o do/while

JS Basics - logic - loops - for

= for loop has three clauses, including
* nitialisation clause
* conditional test clause
* update clause

for (statementl; statement2; statement3) {

...code block...

}

= statement| = executes before loop starts
e statement2 = condition for running the loop
e statement3 = executes dfter each iteration of the loop

JS Basics - logic - loops - for

Loop through a defined index from O...

oop index =0
oop index = 1
oop index =2
oop index = 3
oop index = 4
oop index =5
oop index = 6
oop index =7
oop index = §
oop index =9

JavaScript - for loop

JS Basics - logic - loops - for

Create a custom index and multiply per loop
iteration...

a=10

a=14
a=16
a=1§

JavaScript - for loop with multiplication

JS Basics - logic - loops - while & do/while

= while and do...while loops

= basic difference between these loops, while and do...while
* conditional tested is before the first iteration (while loop)
* dfter the first iteration (do. . .while) loop

= if the condition is initially false
e a while loop will never run
* ado...while will run through for the first time

* other specialised forms of loop in JavaScript
o e.g. for/in..

n.b. programming languages, and CS in general,
start counting at 0. i.e. an index of values...

JS Basics - logic - loops - while

while loop continues to execute whilst

condition remains true...

while (condition is true) {

}

counter
counter
counter
counter
counter
counter
counter
counter
counter
counter
counter

...code block...

= N e

]

JavaScript - while loop

JS Basics - logic - loops - while

while loop with counter increment before
output...

—

counter
counter
counter
counter
counter
counter
counter
counter
counter
counter
counter

L T | | N | R T [1
[= NPT SO PUR Y

—_— A 0
=

JavaScript - while loop

JS Basics - logic - loops - do/while

do/while loop executes do first, and then
checks while condition...

do {
...code block...

} while (condition is true)

=1

counter
counter
counter
counter
counter
counter

—l 00 D =

-

JavaScript - do/while loop

