Comp 125 - Visual Information Processing

Spring Semester 2019 - Week 12 - Wednesday

Dr Nick Hayward

HTML Canvas - draw with a function

= we may abstract drawing required shapes to a custom function

= a custom function may then be called to create a shape

* e.g. any size circle

// define custom function to draw circle

function circle() {

}

HTML Canvas - draw with a function

custom drawn circles - part |

® create a function to draw a custom circle
e position, radius, and fill

= function draws a standard circle of varying radius and fill

= e.g. we might start with the following initial function

// define custom function to draw circle

function circle(x, y, radius, fillCircle) {

= then call this function as follows

// outer circle for head
circle(100, 100, 50, false);

HTML Canvas - draw with a function

custom drawn circles - part 2

= fill out the logic for our working circle function as follows,

// define custom function to draw circle
function circle(x, y, radius, fillCircle) {
// start recording
context.beginPath();
// define arc - x, y, radius, start posn, end posn, anticlockwise...
context.arc(x, y, radius, 0, Math.PI * 2, false);
// check fill or stroke
if (fillcCircle) {
context.fill();
} else {

context.stroke();

HTML Canvas - draw with a function

a certain well-known mouse - part |

= we might use this new custom circle function

e create a certain well-known mouse

= start by defining the canvas element in out HTML

<!-- add canvas -->
<canvas id="drawing" width="800" height="800"></canvas>

= then define the canvas and context in our JavaScript logic

* required to start drawing our shapes

// define canvas
var canvas = document.getElementById('drawing');
// define context for drawing

var context = canvas.getContext('2d4');

HTML Canvas - draw with a function

a certain well-known mouse - part 2

= add the circle function to our JavaScript

e we may start drawing the required shapes for our drawing

// define custom function to draw circle
function circle(x, y, radius, fillCircle) {
// start recording
context.beginPath();
// define arc - x, y, radius, start posn, end posn, anticlockwise...
context.arc(x, y, radius, 0, Math.PI * 2, false);
// check fill or stroke
if (fillcCircle) {
context.fill();
} else {

context.stroke();

HTML Canvas - draw with a function

a certain well-known mouse - part 3

= for this particular drawing
 add necessary specifics for colour of each circle's fill style

e.g.

context.fillStyle = 'DarkRed’;

HTML Canvas - draw with a function

a certain well-known mouse - part 4

= to draw the required shape for our well-known mouse

e we can use three circles

= each circle will define
e position - x and y coordinates
e a radius

e and fill colour or not

= then draw our well-known mouse
e call the circle function three times

// 2. a certain well-known mouse
// left ear

circle (400, 100, 35, true);

// right ear

circle(500, 100, 35, true);

// head

circle (450, 160, 57, true);

= Example - circle function
e http:/llinode4.cs.luc.edulteaching/cs/demos/ | 25/drawing/basic | |-function-circles/

HTML Canvas - basic animations

draw and move

= we've seen how to draw static shapes and composite images
» e.g. from a stepped pyramid to a certain well-known mouse

= it's also possible to animate these shapes

= animations within the confines of the defined canvas element
= animate on single or multiple axes

= add interaction and control

= move shapes around the canvas...

HTML Canvas - basic animations

horizontal animation - part |

= start with a basic drawing
» then animate this shape across the screen

= e.g. draw a simple rectangle to a standard HTML5 canvas element

= we may use this shape in the animation
e move it gradually across the HTML page

= define a start position for the X coordinate
 then draw the initial shape

// initial start position X for shape

var pos = 0;

// define rect for shape
context.fillRect(pos, 0, 40, 40);

HTML Canvas - basic animations

horizontal animation - part 2

= jnitially, the drawn rectangle is still simply static on the page

= to add a sense of animation
» need to continually draw this shape at a given time interval

= need to ensure each previously drawn shape is removed from the
canvas

= if not, drawing is a growing horizontal rectangle
* expands along the x-axis

HTML Canvas - basic animations

horizontal animation - part 3

= we might now update our JavaScript code with a timer, setInterval

// initial start position X for shape

var pos = 0;

setInterval (function() {

}, 15);

= in the call to setInterval
e define a timer of 15 milliseconds

= each call of setInterval () will execute an anonymous function
 controls drawing of the shape

e controls the animation rendering

HTML Canvas - basic animations

horizontal animation - part 4

= to draw a moving shape

e we need to clear the canvas or part depending upon the animation requirements

// clear rect - matches size of canvas
context.clearRect (0, 0, 400, 400);

= clearRect () method on the context object
 called before each shape is drawn

» dimensions set to size of defined canvas element in the HTML

= we have a clear canvas for each frame of the animation

HTML Canvas - basic animations

horizontal animation - part 5

= we may draw our shape as expected

// define rect for shape
context.fillRect(pos, 0, 40, 40);

= with this usage we're dynamically updating the value of the shape's position
» makes the shape appear to move across the canvas

HTML Canvas - basic animations

horizontal animation - part 6

= update the shape's position

e add a simple increment oberator to our earlier pos variable
dd I t tor t | bl

// increment position value

pos++;
= need to check position of shape relative to defined dimensions of canvas

// check position to stop shape leaving canvas
if (pos > 400) {

pos = 0;
}

= Example - horizontal animation
 http:/llinode4.cs.luc.edulteaching/cs/demos/ | 25/drawing/basic-animation/animation |/

HTML Canvas - basic animations

animate size - part |

= we may also animate the size of a shape using a similar pattern

= start by defining an initial size for our shape

// initial size for shape

var size = 0;

= set initial size to zero to allow the shape to grow

= for each frame of the animation
* modify dimensions of width and height

HTML Canvas - basic animations

animate size - part 2

= we may use setInterval() to control canvas
e controls drawing of shape to create effect of animation

setInterval (function() {

}, 15);

HTML Canvas - basic animations

animate size - part 3

» need to clear canvas for each frame of the animation
e then draw the required shape

// clear rect - matches size of canvas
context.clearRect (0, 0, 400, 400);
// define rect for shape

context.fillRect (0, 0, size, size);

HTML Canvas - basic animations

animate size - part 4

= for this specific animation example

e we may save on redraws to the context by calling

// clear rect - matches size of canvas
context.clearRect (0, 0, 400, 400);

= only when the shape has reached the edge of the canvas

HTML Canvas - basic animations

animate size - part 5

= we may increment the size of the shape

// increment position value

size++;
®» also check overall size

 creates a loop to the animation

 j.e. once shape has reached edge of canvas

// check position to stop shape leaving canvas
if (size > 400) {
size = 0;

}

= Example - animate size
 http:/llinode4.cs.luc.edulteaching/cs/demos/ | 25/drawing/basic-animation/animation2/

HTML Canvas - animations

fun demos

Some fun examples of animations with HTML5
Canvas API.

Destroy things in a video -
http://www.craftymind.com/factory/html5video/CanvasVideo.html

Particles - https://codepen.io/eltonkamami/pen/ECrKd

Curtain - https://codepen.io/dissimulate/pen/KrAwx

Jelly - https://codepen.io/dissimulate/pen/dJgMaO

= Canvas cycle - http://www.effectgames.com/demos/canvascycle/

HTML Canvas - basic animations

random movement - part |

= create various shapes and then animate paths

e randomly move shape around the canvas

= start by defining the canvas and the context

// define canvas

var canvas = document.getElementById('drawing');
// define context for drawing

var context = canvas.getContext('2d');

HTML Canvas - basic animations

random movement - part 2

= decide upon a shape to draw

e e.g acircle..

= we may slightly modify the circle function

e add option for variant colours

// define circle function
function circle(x, y, radius, fillCircle, color) {
// start recording
context.beginPath();
// define arc - x, y, radius, start posn, end posn, anticlockwise...
context.arc(x, y, radius, 0, Math.PI * 2, false);
// check fill or stroke
if (fillcCircle) {
// colour for fill
context.fillStyle = color;
context.fill();
} else {
// set line width & line colour
context.linewidth = 2;
context.strokeStyle = color;
context.stroke();

}

= abstract color usage for drawing a circle
* pass a parameter for the required colour

» colour may be used for either a fill colour or stroke style

= colour usage will be relative to boolean passed for fil11Circle

HTML Canvas - basic animations

random movement - part 3

= then call this updated circle function

e create our well-known mouse with variant colours

// 1. a well-known mouse with variant colours
// left ear

circle(117, 100, 18, true, 'black');

// right ear

circle(183, 100, 18, true, 'black');

// head

circle(150, 130, 33, true, 'DarkRed');

= Example - variant mouse colours
 http:/llinode4.cs.luc.edulteaching/cs/demos/ | 25/drawing/basic-animation/animation3. |/

